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1 Introduction

This is a report on the work carried out by the second author under the supervision of the first author
during the period June 27 to August 27, 2004. The work consisted of learning the necessary mathematics
for understanding some of the basic theory of wavelet transforms as presented by Ingrid Daubechies in
[Daubechies 1988]. The text [Nievergelt 1999] was used as a guide. This text, while very useful, contains
numerous errors. Most of these are either typographical or minor calculation errors. However, there also
seem to be important gaps in some of the proofs. For the gaps we found, we indicate possible repairs. The
repairs are drawn from the literature but with the results and proofs modified to make them accessible to
a reader whose background includes calculus and linear algebra but not Lebesgue integration. Our review
of the literature in the brief time we had for our work was limited to parts of the cited bibliography.
Undoubtedly some of what we have done here is known to be achievable by simpler means. The results of
some computational experimentation based on the theory of wavelet transforms are described in the last
section.

We use the notation f̂ for the fourier transform of f in addition to the notation Ff from [Nievergelt 1999].

2 Problems

We begin with a list of problems, both serious gaps and trivial typographical errors, which we encountered
in [Nievergelt 1999]. The mathematical errors are items 30 and 43 and, to a lesser extent, items 11, 25, 36
and 37. Items 30 and 43 are addressed in greater detail in subsequent sections of these notes. We worked
from the first printing of [Nievergelt 1999]. After the writing of this section, we became aware that there is a
second printing in which many of the typographical errors have been corrected. In the list below, the errors
marked by an asterisk in the margin remain in the second printing.

1. page 10: Figure 1.7(c), vertical axis should be labeled −4, 4 instead of 5, 5.

∗ 2. page 76: line 2 of displayed equation

=
1−

√
3

4
· 1−

√
3

2
+ h2 · 0 + h1 · 0 + h0 · 0

3. page 77: middle of the page

= −0− 2
√

3
8

+
4− 2

√
3

8

4. page 80: Example 3.6 (b)
4.5 = 9 · 2−1 = 100.1two

∗ 5. page 84: the lines
f(0)ϕ(r0) ≈ f(0)

f(1)ϕ(r1) ≈ 0

f(2)ϕ(r2) ≈ 0

are accurate but not precisely what is needed in the context. It would be better to say

ϕ(r0) ≈ 1

ϕ(r1) = ϕ(r0 + 1) ≈ 0

ϕ(r2) = ϕ(r0 + 2) ≈ 0
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and because 0 < r0 < 1, we have
ϕ(rk) = ϕ(r0 + k) ≈ 0

for k ≥ 3 or k ≤ −1, since then r0 + k > 3 or r0 + k < 0 (respectively). Thus, in the sum

2n−1∑
k=0

f(k)ϕ(r0 + `− k),

the only nonzero term occurs when `− k = 0, that is, when k = `. Hence, for 0 ≤ ` ≤ 2n − 1,

2n−1∑
k=0

f(k)ϕ(r0 + `− k) ≈ f(`)ϕ(r0) ≈ f(`).

6. page 86: line 5
(s−4, s−3, s−2, s−1; s0, s1, s2, s3; s4, s5, s6, s7)

7. page 86: for consistency, either line 9 should read

ak =
k+3∑
r=k

ϕ(r − k)sr

or line 18 (for example) should read

a1 = s2 · ϕ(2− 1) + s3 · ϕ(3− 1)

(Since ϕ(0) = ϕ(3) = 0, this is merely a stylistic quibble.)

8. page 89: line 5
(s−4, s−3, s−2, s−1; s0, s1, s2, s3; s4, s5, s6, s7)

9. page 89: line 15

a−2 = s−2 · ϕ(−2 + 2) + s−1 · ϕ(−1 + 2) + s0 · ϕ(0 + 2) + s1 · ϕ(1 + 2)

10. page 90: 4th line from bottom, the last entry in the extension should be

s2n+1−1

∗ 11. page 97, top of page: it does not follow from DΩT
DΩ = 2I that DΩ is invertible. Indeed, because

DΩT
DΩ = 2I, invertibility would imply DΩT

DΩ = DΩDΩT = 2I which fails because the upper-left
entry of DΩDΩT is h2

0 + h2
3 < h2

0 + h2
1 + h2

2 + h2
3 = 2. DΩ would be invertible if it were extended as

follows, where the box surrounds the (0, 0) entry.

DΩ =



. . .
...

...
...

...
...

...
. . . h0 h3 . . .
. . . h1 −h2 . . .

. . . h2 h1 h0 h3 . . .

. . . h3 −h0 h1 −h2 . . .

. . . h2 h1 h0 h3 . . .

. . . h3 −h0 h1 −h2 . . .

. . . h2 h1 . . .

. . . h3 −h0 . . .
...

...
...

...
...

...
. . .


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This error reappears in the discussion of the inverse transform on page 103. The statement “By
periodicity, the first two rows coincide with the rows with indices 2 ∗ (2n−1− 1) and 2 ∗ (2n−1 +1), . . .”
is false with the given definition of DΩ. The formulas for an−1

0 and an−1
1 on lines 7 and 8 are fine.

12. page 98: line 4
a
(2)
2n+1−2, a

(2)
2n+1−1

13. page 101: line 4
+c(n−3)

0 ψ([r/8− 1])

14. page 104: middle of page, first line of step 2

(c(0)0 , c
(0)
1 )

15. page 105: top of page
a
(1)
1 = h3a

(0)
1 − h0c

(0)
1 + h1a

(0)
0 − h2c

(0)
0

16. page 105: line 7
a
(1)
2 = h2a

(0)
0 + h1c

(0)
0 + h0a

(0)
1 + h3c

(0)
1

∗ 17. page 156: top of page
f̂ 7→~f = N

F Ωf̂

(arrow replaced by hat over last symbol)

18. page 187: 3rd line after equation in middle of the page

(1.1787797− 1)/2 ≈ 0.09 = 9%

∗ 19. page 190: line 4 of Proposition 6.25 should read

for all real t ∈ I

∗ 20. page 195: top of page∑N
k=−N |zkwk| = 〈(|z−N |, . . . , |z0|, . . . , |zN |), (|w−N |, . . . , |w0|, . . . , |wN |)〉

≤ ‖(|z−N |, . . . , |z0|, . . . , |zN |)‖2 · ‖(|w−N |, . . . , |w0|, . . . , |wN |)‖2

∗ 21. page 196: line 4 of proof

=
1

2T

{
f(s)e−iksπ/T

∣∣∣∣T
−T

−
∫ T

−T

f(s)(−ikπ/T )e−iksπ/T ds

}

(coefficient in front of integral deleted)

∗ 22. pages 197-198: 1/2T missing in various places, e.g. the equation in the statement of Corollary 6.41
should read ∑

k∈Z
|cf,k|2 =

1
2T

∫ T

−T

|f(t)|2dt
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23. page 199: line 2 of equation in proof

=
1

2T

∫ −t+T

−t−T

f(x+ t) ·
sin[N + 1

2 ](x)π/T
sin(x)π/(2T )

dx

∗ 24. page 199: last line

=
1
2
· 1
2T

∫ T

−T

sin[N + 1
2 ](x)π/T

sin(x)π/(2T )
dx =

1
2
· 1 =

1
2

∗ 25. page 209: in definition 7.8, the assumption that both functions are bounded is too restrictive because
it does not cover the use of the convolution later in the chapter, e.g. Propositions 7.22, 7.31, definition
of h in the proof of 7.34. It seems to suffice for the rest of the text to have convolutions of integrable
functions one of which is bounded or both of which are in L2. The integrand in the definition is
then either the product of a bounded function and an integrable function or the product of two L2

functions and hence is integrable. Of course, in results like 7.11, 7.31 it then is necessary to add suitable
conditions on the functions as part of the hypothesis.

∗ 26. page 210: in the statement of Lemma 7.12, it seems to be relevant for the proof of Theorem 7.34 (see
Section 4 of these notes) to note that the hypothesis that Ff is integrable can be deleted. (The proof
needs no changes for this.)

∗ 27. page 212: middle of page

f(r) = lim
B→∞

(f ∗AB)(r)

= lim
B→∞

1√
2π

∫
R
(Ff)(s)KB(s)ei·r·sds

∗ 28. page 217: line 6 of displayed equation

=
∫

[x−R,x+R]

|{f(x)− f(t)}wc(x− t)|dt+
∫

R\[x−R,x+R]

|{f(x)− f(t)}wc(x− t)|dt

∗ 29. page 222: line 3

=
1√
2π

∫
R
f(z) · e−i·w·(z+u)dz = (Ff)(w) · e−iuw

(dx replaced by dz)

∗ 30. page 224, lines 5–8 of the proof of 7.34: why does the Fourier inversion theorem apply to Fh? There
seems to be a missing proof that Fh = |Ff |2 is integrable. See Section 4.

∗ 31. page 227: line 2 of displayed equation at top of page, replace = by ≤.

∗ 32. page 228: middle of page

=

∣∣∣∣∣
∫
|x|>R

g(x)
(
e−irx − 1

)
e−iwxdx+

∫ R

−R

g(x)
(
e−irx − 1

)
e−iwxdx

∣∣∣∣∣
≤
∫
|x|>R

|g(x)|
∣∣e−irx − 1

∣∣ dx+
∫ R

−R

|g(x)|
∣∣e−irx − 1

∣∣ dx
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∗ 33. page 244 line 5 and page 245 line 16:

F(T ◦ng)(t) =
n∏

`=1

(
1
2

N∑
k=0

hke
−ikt/2`

)
· (Fg)(t/2n).

(subscript under product is ` = 1 instead of ` = 0)

∗ 34. page 244 sentence after equation (8.7): is it the sequence (F(T ◦n)) which was intended here? If not,
why is this true? See also item 43 below.

∗ 35. page 248: top of page

ϕ̂(t) := lim
n→∞

(
FT ◦ng

)
(t) =

∞∏
`=1

(
1
2

N∑
k=0

hke
−ikt/2`

)
1√
2π

∫
R
g

(coefficient added in front of
∫

R g)

∗ 36. page 248, statement and proof of Corollary 8.9:

(a) The use of formula (8.9) in the first sentence of the proof assumes via the application of the Fourier
transform that g is integrable. Hence something needs to be said about ϕ being integrable.

(b) The last line of the proof is confusing in the context of what has been presented so far because
F−1 has only been applied to functions in L1 whereas Fϕ1, Fϕ2 have not been shown or assumed
to lie in L1. Of course this is unnecessary because of the injective nature of the Fourier transform,
but this has not been stated. It might be better to say that Fϕ1 = Fϕ2 gives that F(ϕ1−ϕ2) = 0
belongs to L1 and hence, by Theorem 7.30, (ϕ1 − ϕ2)(t) = F−1(0)(t) = 0 at any point t where
ϕ1 and ϕ2 are both continuous, where F−1 means specifically the operator given by (F−1f)(t) =
(1/

√
2π)

∫
R f(s)eist ds. This conclusion is weaker than the given one (which does not mention

points of continuity).

(c) In the statement of Corollary 8.9, say “There exists at most one continuous integrable function. . .”.

∗ 37. page 248, lines 10–11: why does the existence of ϕ̂ ensure that ϕ is a Fourier transform? The decay
condition introduced farther down on the same page ensures that ϕ̂ ∈ L1 ∩ L2. The fact that ϕ̂ ∈ L1

ensures the existence of ϕ = F−1ϕ̂ where, by definition,

(F−1ϕ̂)(t) =
1√
2π

∫
R
ϕ̂(s)eist ds.

The Plancherel theorem also ensures that ϕ ∈ L2. If we were working with the Fourier transform on
L2, which has not been introduced here, then it would also follow that Fϕ = ϕ̂. In the present context,
we need ϕ ∈ L1 before we can say that ϕ̂ is a Fourier transform. We know from Proposition 7.38 that
ϕ is continuous. If we show that ϕ has compact support then it follows that ϕ ∈ L1. This does not
seem to follow easily from the results in the text. See Section 5 below, particularly Remark 5.3.

38. page 249: middle of page, for consistency it might be better to write

| sin(x)| ≤ 1

∗ 39. page 249, lines 13, 14: This statement has already been proven. We know (Fg)(t/2n) converges from
Lemma 8.6, and the convergence of the infinite product was the conclusion of the argument on page
247, and therefore their product converges as well. What is about to be proven is that there exist
positive constants C and s so that |ϕ̂(t)| ≤ C/(1 + |t|)1+s, which by the argument on page 248 ensures
that ϕ̂ ∈ L1 ∩ L2.
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∗ 40. page 250: line 7

∣∣e−ir − 1
∣∣ = ∣∣∣∣∫ r

0

(−i)e−itdt

∣∣∣∣ ≤ ∫ |r|

0

| − i|
∣∣e−it

∣∣dt =
∫ |r|

0

1dt = |r|.

(absolute value in second last integral moved)

∗ 41. page 251: line -6

1 + e−it/2`

= 2e−it/2`+1 eit/2`+1
+ e−it/2`+1

2
= 2e−it/2`+1

cos(t/2` + 1)

(2’s added in front of expressions after both equality signs)

42. page 255: top of page

=
( N∑

k=0

hkhk−2(q−p)

)
1
4

∫
R
|g(w)|2 dw

∗ 43. page 255, first three lines of the proof of 8.17 (see also the sentence after the bulleted list on page 240):
this statement seems to be false. What was shown in the previous section is that the Fourier transforms
of the terms of the sequence (T ◦ng)∞n=0, rather than the terms themselves, converge uniformly. See
Section 5 below.

44. page 257: line 2
ϕ

(m)
k

45. page 257: middle of page
p = 2m− n+ 1

46. page 258: top of page

=
∑
p1

(−1)p1h1−p1

∫
R
ϕ(2(2mx− h)− p1)ψ(2nx− k) dx

∗ 47. page 281: isn’t section 9.2.3 nearly identical to section 3.2.1?

∗ 48. page 285: what is the point of Part D?

3 Solutions to a few exercises

In this section we provide a few more details for some of the arguments in the text and give the solutions to
some exercises whose results are needed for the proofs in subsequent sections below.

Exercise 7.1: Calculate (Fh)(w) for the function h define by

h(x) =
{

1− |x| if −1 ≤ x ≤ 1,
0 otherwise
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(Fh)(w) =
1√
2π

∫ ∞

−∞
h(x)e−ixw dx

=
1√
2π

∫ 1

−1

(1− |x|)e−ixw dx

=
1√
2π

(∫ 1

0

(1− x)e−ixw dx+
∫ 0

−1

(1 + x)e−ixw dx

)
=

1√
2π

(∫ 1

0

e−ixw dx−
∫ 1

0

xe−ixw dx+
∫ 0

−1

e−ixw dx+
∫ 0

−1

xe−ixw dx

)
=

1√
2π

(
e−ixw

−iw

∣∣∣∣1
0

− xe−ixw

−iw

∣∣∣∣1
0

+
e−ixw

(−iw)2

∣∣∣∣1
0

+
e−ixw

−iw

∣∣∣∣0
−1

+
xe−ixw

−iw

∣∣∣∣0
−1

− e−ixw

(−iw)2

∣∣∣∣0
−1

)

=
1√
2π

(
ie−iw

w
− i

w
− ie−iw

w
− e−iw

w2
+

1
w2

+
i

w
− ieiw

w
+
ieiw

w
+

1
w2

− eiw

w2

)
=

1√
2π

(
2− e−iw − eiw

w2

)
=

1√
2πw2

(2− (cos(−w) + i sin(−w))− (cos(w) + i sin(w)))

=
1√

2πw2

(
2− cos(w) + i sin(w)− cos(w)− i sin(w)

)
=

1√
2πw2

(2− 2 cos(w)) =
√

2(1− cos(w))√
πw2

=
√

2(1− cos 2(w/2))√
πw2

=
√

2(1− (cos2(w/2)− sin2(w/2))√
πw2

=
√

2(2 sin2(w/2))√
πw2

=
1√
2π

(
sin(w/2)
w/2

)2

Exercise 8.6: Consider Daubechies’ coefficients h0, h1, h2, h3.

(a) Verify that
h(z) = (1/2)(h0 + h1z + h2z

2 + h3z
3)

= [(1/2)(1 + z)]2[(1−
√

3)z + (1 +
√

3)]/2,

so that K = 2 and q(z) = [(1−
√

3)z + (1 +
√

3)]/2.
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Solution:

[(1/2)(1 + z)]2[(1−
√

3)z + (1 +
√

3)]/2

=
1
8
((1 + 2z + z2)(z −

√
3z + 1 +

√
3))

=
1
8
(z −

√
3z + 1 +

√
3 + 2z2 − 2

√
3z2 + 2z + 2

√
3z + z3 −

√
3z3 + z2 +

√
3z2)

=
1
8
(1 +

√
3 + 3z +

√
3z + 3z2 −

√
3z2 + z3 −

√
3z3)

=
1
8
((1 +

√
3) + z(3 +

√
3) + z2(3−

√
3) + z3(1−

√
3))

=
1
2
(h0 + zh1 + z2h2 + z3h3)

(b) Verify that if |z| = 1, then |q(z)| ≤
√

3, so that Q =
√

3.

Solution:
q(z) = [(1−

√
3)z + (1 +

√
3)]/2

|q(z)| = |[(1−
√

3)z + (1 +
√

3)]/2|

= |(1−
√

3)z/2|+ (1 +
√

3)/2

≤ |(1−
√

3)/2| · |z|+ (1 +
√

3)/2

= (
√

3− 1)/2 · 1 + (1 +
√

3)/2

= (
√

3− 1 +
√

3 + 1)/2

=
√

3

therefore max(q(z)) =
√

3 when z = e−it and so Q =
√

3.

(c) Verify that K − log2(Q) = 2− log2(
√

3) > 1.

Solution:

K − log2(Q) = 2− log2(
√

3) > 1

− log2(
√

3) > −1

log2(
√

3) < 1

2log2(
√

3) < 21

√
3 < 2

Exercise: For the proof of Proposition 6.33, show that

1
2T

∫ T

−T

sin[N + 1
2 ](t− s)π/T

sin(t− s)π/(2T )
ds = 1

By Lemma 6.13,
sin[N + 1

2 ](t− s)π/T
sin(t− s)π/(2T )

=
N∑

k=−N

eik(t−s)π/T
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Therefore,

1
2T

∫ T

−T

sin[N + 1
2 ](t− s)π/T

sin(t− s)π/(2T )
ds =

1
2T

∫ T

−T

N∑
k=−N

eik(t−s)π/T ds

=
1

2T

∫ T

−T

(
1 +

N∑
k=1

(eik(t−s)π/T + e−ik(t−s)π/T )

)
ds

=
1

2T

∫ T

−T

(
1 +

N∑
k=1

2 cos(k(t− s)π/T )

)
ds

= 1 +
1

2T

N∑
k=1

2 sin(k(t− s)π/T )
−kπ/T

∣∣∣∣T
−T

= 1 +
1
T

N∑
k=1

sin(k(t− T )π/T )− sin(k(t+ T )π/T )
−kπ/T

= 1

since [k(t+ T )π/T ]− [k(t− T )π/T ] = 2kπ and hence sin(k(t− T )π/T ) = sin(k(t+ T )π/T ).

Exercise: page 251, justify the claims in lines 11 and 12.

≤ Q`t · exp(B|t/2`t |) ≤ Q`t · exp(B)

≤ Q1+log2 |t| exp(B) = Q ·Qlog2 |t| exp(B)

≤ eQ(elog Q)log2 |t|eB = eQeBe(log Q) log2 |t|

≤ C · e(log Q) log2 |t| = C · e(log Q) log |t|/ log 2

= C · (elog |t|)log Q/ log 2 = C · |t|log Q/ log 2

Because Q = max{|q(z)| : |z| = 1} ≥ q(1) = 1 (see top of page 250), logQ ≥ 0. As well, log 2 > 0. So
logQ/ log 2 ≥ 0 and hence the function x 7→ xlog Q/ log 2 is nondecreasing. Thus,

C · |t|log Q/ log 2 ≤ C · (1 + |t|)log Q/ log 2.

This gives ∣∣∣∣∣
∞∏

`=1

q(e−it/2`

)

∣∣∣∣∣ ≤ C · (1 + |t|)log Q/ log 2

when |t| > 1. Then the inequality holds for all t if C is suitably increased since (1 + |t|)log Q/ log 2 ≥ 1.

4 Fourier transforms

The main point of this section is to fill what appears to be a gap in the proof of the Plancherel identity,
Theorem 7.34. However, we prove more than is needed for this. The material in this section is drawn from
[Rudin 1987], except that we prove only the special cases which make sense for the Riemann integral in the
place of the Lebesgue integral and for piecewise continuous functions in the place of Lebesgue measurable
functions. The proofs are adapted accordingly.
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Proposition 4.1 For any 1 ≤ p < ∞, if f ∈ Lp and f is piecewise continuous, then there is a continuous
function g with support in some interval [−A,A], such that

‖f − g‖p < ε.

Proof. By definition of piecewise continuous, there is a strictly increasing sequence (an : n ∈ Z) such that
limn→∞ an = ∞, limn→−∞ an = −∞, f is continuous on (an, an+1) for each n ∈ Z, and limx→an−

f(x) and
limx→an+ f(x), both exist.

Define limx→an−
f(x) = `n and limx→an+ f(x) = Ln.

Since limx→an+ f(x) = Ln, there is a δ+ > 0 such that for x > an

|x− an| = x− an < δ+ ⇒ |f(x)− Ln| < 1.

Since limx→an−
f(x) = `n there is a δ− > 0 such that for x < an

|x− an| = an − x < δ− ⇒ |f(x)− `n| < 1.

Choose an R > 0 big enough so that ∣∣∣∣∣
∫ R

−R

|f |p −
∫ ∞

−∞
|f |p

∣∣∣∣∣ < εp/2.

Note that whenever x < −R < R < y, we have∣∣∣∣∫ y

x

|f |p −
∫ ∞

−∞
|f |p

∣∣∣∣ < εp/2

Choose m large enough so that a−m < −R < R < am and define ε0 = εp/(2(2m+ 1)). Choose xn, yn close
enough to an such that, for n = −m+ 1, · · · ,m− 1,

an − δ− < xn < an < yn < an + δ+

and
(yn − xn) <

ε0
(|Ln − `n|+ 2)p

.

For n = −m
a−m − δ− < x−m < a−m < y−m < a−m + δ+

and
(y−m − x−m) <

ε0
(2max(|L−m|, |`−m|) + 2)p

.

And for n = m
am − δ− < xm < am < ym < am + δ+

and
(ym − xm) <

ε0
(2max(|Lm|, |`m|) + 2)p

.
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Let g be the continuous function defined by

g(x) =



f(x) if a−m ≤ x ≤ am, x /∈
⋃

n∈Z[xn, yn]

f(yn)− f(xn)
yn − xn

(x− xn) + f(xn) if x ∈ [xn, yn], n = −m+ 1, · · · ,m− 1

f(y−m)
y−m − x−m

(x− x−m) if x ∈ [x−m, y−m]

f(xm)
ym − xm

(ym − x) if x ∈ [xm, ym]

0 otherwise

We have, for xn ≤ x ≤ yn, n = −m+ 1, · · · ,m− 1,

min(Ln − 1, `n − 1) < min(f(xn), f(yn)) ≤ g(x) ≤ max(f(xn), f(yn)) < max(Ln + 1, `n + 1)

and, for the same values of x and n, by the choice of xn and yn we have

`n − 1 < f(x) < `n + 1 for xn ≤ x < an and Ln − 1 < f(x) < Ln + 1 for an < x ≤ yn

and hence
min(Ln − 1, `n − 1) < f(x) < max(Ln + 1, `n + 1)

for all x ∈ [xn, yn], x 6= an. This gives, for all x ∈ [xn, yn], x 6= an

|f(x)− g(x)| < max(Ln + 1, `n + 1)−min(Ln − 1, `n − 1) ≤ |Ln − `n|+ 2.

Thus, ∫ yn

xn

|f(x)− g(x)|p ≤
∫ yn

xn

(|Ln − `n|+ 2)p = (|Ln − `n|+ 2)p(yn − xn) < ε0

For x−m ≤ x ≤ y−m,

|g(x)| ≤ |f(y−m)| ≤ |f(y−m)− L−m|+ |L−m| < |L−m|+ 1,

and hence, using |f(x)| < |`−m|+ 1 for x−m ≤ x < a−m and |f(x)| < |L−m|+ 1 for a−m < x ≤ y−m, we get
that when x−m ≤ x ≤ y−m, x 6= a−m,

|f(x)− g(x)| ≤ |f(x)|+ |g(x)| < max(|`−m|, |L−m|) + 1 + |L−m|+ 1 ≤ 2 max(|`−m|, |L−m|) + 2.

Consequently, ∫ y−m

x−m

|f(x)− g(x)|p dx ≤ (2 max(|L−m|, |`−m|) + 2)p(y−m − x−m) < ε0.

Similarly, when xm ≤ x ≤ ym we get

|g(x)| ≤ |f(xm)| ≤ |f(xm)− `m|+ |`m| < |`m|+ 1,

and therefore, when x 6= am,

|f(x)− g(x)| ≤ |f(x)|+ |g(x)| < max(|`m|, |Lm|) + 1 + |`m|+ 1 ≤ 2 max(|`m|, |Lm|) + 2
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which gives ∫ ym

xm

|f(x)− g(x)|p dx ≤ (2 max(|Lm|, |`m|) + 2)p(ym − xm) < ε0.

Therefore,∫
|f − g|p =

∫ y−m

x−m

|f − g|p +
m−1∑

n=−m+1

∫ yn

xn

|f − g|p +
∫ ym

xm

|f − g|p +
∫

R\[x−m,ym]

|f − g|p

< ε0 + (2m− 1)ε0 + ε0 + εp/2 = (2m+ 1)ε0 + εp/2 = εp/2 + εp/2 = εp

Hence,

‖f − g‖p =
(∫

|f − g|p
) 1

p

< (εp)
1
p = ε

�

Proposition 4.2 (Cf. [Rudin 1987, Theorem 9.5]) For any piecewise continuous function f on R and every
y ∈ R, let fy be the translate of f defined by

fy(x) = f(x− y), (x ∈ R)

If 1 ≤ p <∞ and if f ∈ Lp, the mapping
y → fy

is a uniformly continuous mapping of R into Lp.

Proof. Fix an ε > 0. Since f ∈ Lp, there is a continuous function g whose support lies in a bounded
interval [−A,A], such that

‖f − g‖p < ε/3.

By the uniform continuity of g, there exists a δ ∈ (0, A) such that

|s− t| < δ ⇒ |g(s)− g(t)| < ε

3(3A)1/p

Now suppose that |s−t| < δ. We may also assume that s ≤ t, the case t ≤ s being completely symmetric. We
have g(x− s) = 0 unless −A < x− s < A and g(x− t) = 0 unless −A < x− t < A. So g(x− s) = g(x− t) = 0
unless −A+ s < x < A+ s or −A+ t < x < A+ t and hence, unless −A+ s < x < A+ t. This gives

‖gs − gt‖p
p =

∫ ∞

−∞
|g(x− s)− g(x− t)|p dx =

∫ t+A

s−A

|g(x− s)− g(x− t)|p dx

Also, for any x, |(x− s)− (x− t)| = |s− t| < δ, so

|g(x− s)− g(x− t)| < ε

3(3A)1/p
.

Thus,

‖gs − gt‖p
p =

∫ t+A

s−A

|g(x− s)− g(x− t)|p dx

<
εp

3p(3A)
· x
∣∣∣t+A

s−A
=

εp

3p(3A)
· (2A+ t− s)

<
εp(2A+ δ)

3p(3A)
<
εp(3A)
3p(3A)

= εp/3p
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So that,
‖gs − gt‖p < ε/3

As well, for any s ∈ R,

(f − g)s(x) = (f − g)(x− s) = f(x− s)− g(x− s) = fs(x)− gs(x) = (fs − gs)(x)

and the change of variables u = x− s gives

‖fs‖p
p =

∫ ∞

−∞
|fs|pdx =

∫ ∞

−∞
|f(x− s)|pdx =

∫ ∞

−∞
|f(u)|pdu = ‖f‖p

p.

Hence,

‖fs − ft‖p = ‖fs − gs + gs − gt + gt − ft‖p

< ‖fs − gs‖p + ‖gs − gt‖p + ‖gt − ft‖p

= ‖(f − g)s‖p + ‖gs − gt‖p + ‖(g − f)t‖p

= ‖f − g‖p + ‖gs − gt‖p + ‖g − f‖p

< ε/3 + ε/3 + ε/3 = ε

Corollary 4.3 (Cf. [Rudin 1987, Theorem 9.6]) If f ∈ L1, then f̂ is continuous and vanishes at infinity.

Moreover, ‖f̂‖∞ ≤ (1/
√

2π)‖f‖1.

Proof. The inequality is immediate from the definition of f̂ : for any x ∈ R,

|f̂(x)| =
∣∣∣∣ 1√

2π

∫
R
f(t)e−itx dt

∣∣∣∣ ≤ 1√
2π

∫
R
|f(t)| dt =

1√
2π
‖f‖1.

Continuity of f̂ was established in Proposition 7.38 on page 227. There remains to show that f̂ vanishes at
infinity. Since eiπ = −1, we have, for x 6= 0,

f̂(x) = −
∫

R
f(t)e−ix(t+π/x) dt = −

∫
R
f(t− π/x)e−ixt dt.

Hence,

2f̂(x) =
∫

R
{f(t)− f(t− π/x)} e−ixt dt

so that
2|f̂(x)| ≤ ‖f − fπ/x‖1 = ‖f0 − fπ/x‖1

which tends to 0 at x→ ±∞ by Proposition 4.2. �

The next theorem is the special case of the monotone convergence theorem where all the functions
are continuous. In our only application of this, in the proof of Theorem 4.5 below, the argument can be
substantially simplified, avoiding in particular the use of compactness of closed bounded intervals. See
Remark 4.6.

Theorem 4.4 Let fn: R → R, n = 1, 2, 3, . . ., and f : R → R be continuous functions. Suppose that for every
x ∈ R,

(∗) 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ fn(x) ≤ . . .

and limn→∞ fn(x) = f(x). Then

lim
n→∞

∫ ∞

−∞
fn(x) dx =

∫ ∞

−∞
f(x) dx

in the sense that if one side is finite then so is the other and they are equal.
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Proof. For n = 1, 2, . . ., let An =
∫∞
−∞ fn(x) dx and let A =

∫∞
−∞ f(x) dx. From (∗) we get by integrating

that
0 ≤ A1 ≤ A2 ≤ . . . ≤ An ≤ . . . ≤ A.

The limit limn→∞An therefore exists as a member of [0,∞] and is ≤ A. It is a matter of showing that it
equals A. For that it is enough to show that if we fix a number c such that c < A, then for some n we have
c < An ≤ A. So fix a c such that c < A. By definition,

A =
∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R

f(x) dx,

so there is an R > 0 such that c < AR ≤ A, where AR = limR→∞
∫ R

−R
f(x) dx. Now fix a partition

−R = x0, x1, . . . , xk = R

of the interval [−R,R] such that the Riemann sum

S =
k−1∑
i=0

mi(xi+1 − xi),

where mi is the minimum value of f on the interval [xi, xi+1], satisfies c < S ≤ A.
Now choose numbers m′

i < mi such that c < S′ ≤ A, where

S′ =
m−1∑
i=0

m′
i(xi+1 − xi).

It is enough for this that we take m′
i so close to mi that mi −m′

i < (S − c)/(2R), for then we have

S − S′ =
m−1∑
i=0

(mi −m′
i)(xi+1 − xi)

<
S − c

2R

m−1∑
i=0

(xi+1 − xi) =
S − c

2R
((x1 − x0) + (x2 − x1) + . . .+ (xm − xm−1))

=
S − c

2R
(xm − x0) =

S − c

2R
(R− (−R)) = S − c,

and hence S′ = (S′ − S) + S > (c− S) + S = c.

Claim. For some n, we have m′
i < fn(x) for all i = 0, . . . , k− 1 and all x ∈ [xi, xi+1]. Fix i ∈ {0, . . . , k− 1}.

If for each n there is a point an ∈ [xi, xi+1] such that fn(an) ≤ m′
i, then take a subsequence {an`

}∞`=1 which
converges to a point a ∈ [xi, xi+1]. We have limn→∞ fn(a) = f(a) and m′

i < mi ≤ f(a), so for some N and
all n ≥ N we have m′

i < fn(a). By continuity of fN (a), there is a δ > 0 such that for all x ∈ (a− δ, a+ δ),
m′

i < fN (x) and hence, by (∗), we have that for all x ∈ (a− δ, a+ δ) and all n ≥ N , m′
i < fn(x). But now

for any ` large enough so that n` ≥ N and an`
∈ (a− δ, a+ δ), we have

m′
i < fn`

(an`
) ≤ m′

i,

contradiction. Hence, for some ni, we have fni
(x) > m′

i for all x ∈ [xi, xi+1]. The largest number n among
the numbers ni, i = 1, . . . , k − 1 then satisfies the claim because of (∗). This establishes the claim.
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Now use the claim to get n such that m′
i < fn(x) for all i = 0, . . . , k − 1 and all x ∈ [xi, xi+1]. We have

An =
∫ ∞

−∞
fn(x) dx ≥

∫ R

−R

fn(x) dx

=
k−1∑
i=0

∫ xi+1

xi

fn(x) dx >
k−1∑
i=0

∫ xi+1

xi

m′
i dx

=
k−1∑
i=0

m′
i(xi+1 − xi) = S′ > c.

�
The next result corresponds to Theorem 7.34 of [Nievergelt 1999].

Theorem 4.5 (Cf. [Rudin 1987, Theorem 9.13]) If f ∈ L1 ∩ L2 is piecewise continuous, then f̂ ∈ L2 and

‖f̂‖2 = ‖f‖2.

Proof. Fix a piecewise continuous function f ∈ L1 ∩ L2. With the notation f−(x) = f(−x), let h =
f ∗ [(f)−]. As shown in the proof of Theorem 7.34 on page 224, ĥ = |f̂ |2. We have

h(x) =
1√
2π

∫ ∞

−∞
f(x− y)f(−y) dy =

1√
2π

∫ ∞

−∞
f(x+ y)f(y) dy =

1√
2π
〈f−x, f〉.

Therefore, √
2π|h(x)| ≤ ‖f−x‖2‖f‖2 = ‖f‖22.

Hence h is bounded, and h ∈ L1 by Proposition 7.11 because f ∈ L1 and (f)− ∈ L1. By Proposition 4.2
(with p = 2), h is uniformly continuous because we have

|h(x)− h(y)| = |〈f−x, f〉 − 〈f−y, f〉| = |〈f−x − f−y, f〉| ≤ ‖f−x − f−y‖2‖f‖2.

Since h ∈ L1, Lemma 7.12 (in which the hypothesis that the Fourier transform is integrable can be deleted
as mentioned in Section 2) gives

(h ∗AB)(0) =
1√
2π

∫ ∞

−∞
KB(t)ĥ(t) dt =

1√
2π

∫ ∞

−∞
e|t|/Bĥ(t) dt.

Therefore, because h is continuous, integrable and bounded, Lemma 7.13 gives

lim
B→∞

∫ ∞

−∞
e−|t|/Bĥ(t) dt = lim

B→∞
(h ∗AB)(0) = h(0) = ‖f‖22

And the monotone convergence theorem (Theorem 4.4 above or Remark 4.6 below) gives

lim
B→∞

∫ ∞

−∞
e−|t|/Bĥ(t) dt =

∫ ∞

−∞
ĥ(t) dt =

∫ ∞

−∞
|f̂(t)|2 dt = ‖f̂‖22.

So ‖f‖22 = ‖f̂‖22 and hence ‖f‖2 = ‖f̂‖2. �

Remark 4.6 The monotone convergence theorem is easily established for the special case needed in the
foregoing proof. As in the proof of Theorem 4.4, we start with a number c <

∫∞
−∞ ĥ(t) dt and get an R > 0

for which c <
∫ R

−R
ĥ(t) dt. Then note that we have

∫ R

−R
e−|t|/Bĥ(t) dt ≤

∫ R

−R
ĥ(t) dt and

0 ≤
∫ R

−R

ĥ(t) dt−
∫ R

−R

e−|t|/Bĥ(t) dt =
∫ R

−R

(1− e−|t|/B)ĥ(t) dt ≤ (1− e−R/B)
∫ R

−R

ĥ(t) dt

which converges to 0 as B → ∞. Hence, for all large enough values of B we have c <
∫ R

−R
e−|t|/Bĥ(t) dt ≤∫∞

−∞ e−|t|/Bĥ(t) dt ≤
∫∞
−∞ ĥ(t) dt. This shows that limB→∞

∫∞
−∞ e−|t|/Bĥ(t) dt =

∫∞
−∞ ĥ(t) dt.
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5 Wavelet transforms

The claim in sections 8.1 and 8.2 that the arguments in section 8.1 show that the sequence T ◦ng, where g is
the characteristic function of [0, 1), converges uniformly to ϕ seems to be incorrect. In this section, we follow
[Daubechies 1988] to complete the proof, except that our proof addresses only the special case of interest to
us here. The undefined notation in what follows comes from section 8.1 of [Nievergelt 1999].

The next proposition establishes a useful property of the trigonometric polynomial m0(ξ) = h(eiξ) from
which it follows that |m0(ξ)| ≤ 1 for all ξ ∈ R. (Here is our first instance of undefined notation. The
polynomial h is the one from Definition 8.7 of [Nievergelt 1999].)

Proposition 5.1 (Cf. [Daubechies 1988, pages 942–945]) For all ξ ∈ R, |m0(ξ)|2 + |m0(ξ + π)|2 = 1.

Proof. Define
α(ξ) = h0 + h2e

iξ,

β(ξ) = h1 + h3e
iξ.

We have, using h0h2 + h1h3 = 0,

|α(ξ)|2 + |β(ξ)|2 = |h0 + h2e
iξ|2 + |h1 + h3e

iξ|2

= (h0 + h2e
iξ)(h0 + h2eiξ) + (h1 + h3e

iξ)(h1 + h3eiξ)
= (h2

0 + h2
2 + 2h0h2 cos ξ) + (h2

1 + h2
3 + 2h1h3 cos ξ)

= h2
0 + h2

1 + h2
2 + h2

3 = 2

Also

m0(ξ) = h(eiξ) = (1/2)(h0 + h1e
iξ + h2e

i2ξ + h3e
i3ξ)

= (1/2)(α(2ξ) + eiξβ(2ξ))

and

m0(ξ + π) = (1/2)(α(2ξ + 2π) + eiξeiπβ(2ξ + 2π))
= (1/2)(α(2ξ)− eiξβ(2ξ))

This gives

|m0(ξ)|2 + |m0(ξ + π)|2 = (1/2)(α(2ξ) + eiξβ(2ξ))(1/2)(α(2ξ) + eiξβ(2ξ))

+ (1/2)(α(2ξ)− eiξβ(2ξ))(1/2)(α(2ξ)− eiξβ(2ξ))
= (1/4)(|α(2ξ)|2 + |β(2ξ)|2 + e−iξα(2ξ)β(2ξ) + eiξα(2ξ)β(2ξ)

+|α(2ξ)|2 + |β(2ξ)|2 − e−iξα(2ξ)β(2ξ)− eiξα(2ξ)β(2ξ))
= (1/4)(2 + 2) = 1

and this completes the proof. �

Proposition 5.2 (Cf. [Daubechies 1988, Proposition 3.3]) The piecewise constant functions η` defined
recursively by η0 = χ[−1/2,1/2) and for each integer ` ≥ 0, η`+1 = Tη`, i.e.,

η`+1(x) =
3∑

k=0

hkη`(2x− k),

converge uniformly to the continuous function η∞ defined by η∞ = F−1η̂∞, where

η̂∞(ξ) =
1√
2π

∞∏
j=1

m0(ξ/2j).
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Proof. From Chapter 8 of [Nievergelt 1999], specifically the discussion after the proof of Corollary 8.9,
Lemma 8.12 and Exercise 8.6 (see Section 3), we know that η̂∞ belongs to L1∩L2. In particular, η∞ = F−1η̂∞
is defined. As an intermediate step, we show that µ` → η∞ uniformly, where the µ` are defined recursively
as the η` but starting with the initial function µ0 defined by

µ0(x) =

 1 + x, −1 ≤ x ≤ 0
1− x, 0 ≤ x ≤ 1
0, otherwise

By exercise 7.1 (see Section 3), the Fourier transform of µ0 is given by

µ̂0(ξ) = (Fµ0)(ξ) =
1√
2π

(
sin ξ/2
ξ/2

)2

and hence (see equation (8.7) page 244)

µ̂`(ξ) = (Fµ`)(ξ) =

∏̀
j=1

m0(2−jξ)

 (Fµ0)(ξ/2`) =
1√
2π

∏̀
j=1

m0(2−jξ)

[ sin(ξ/2`+1)
ξ/2`+1

]2
From Lemma 8.6 and section 8.1.3, we know that the sequence of functions (Fµ`) = (µ̂`) converges uniformly
on compact sets to η̂∞. Since the functions µ̂` are integrable and the functions µ` are continuous and
integrable, it follows from Proposition 7.30 that µ` = F−1µ̂`.

Remark 5.3 The notation η̂∞ is somewhat abusive since, on the one hand, this function is defined before
η∞ and, on the other hand, even after defining η∞ = F−1η̂∞, we do not yet know that η̂∞ is the Fourier
transform (according to Definition 7.4 of [Nievergelt 1999]) of η∞. We are lacking for this the knowledge
that η∞ is integrable. After we show that µ` → η∞ uniformly, it will then follow that η∞ is zero outside of
[0, 3] since µ` is zero outside [−1/2`, 3− 1/2`].

[It follows inductively that µ`+1 will be zero except for values of x for which for some k = 0, 1, 2, 3 we have
−1/2` ≤ 2x − k ≤ 3 − 1/2` and hence −(1/2`+1) ≤ (k/2) − (1/2`+1) ≤ x ≤ (3/2) + (k/2) − (1/2`+1) ≤
3− (1/2`+1).]

We already know from Proposition 7.38 that since η∞ is an inverse Fourier transform, it is continuous.
Together with the fact that η∞ is zero outside [0, 3], this will show that η∞ is integrable and hence Fη∞
is defined and Fη∞ = F(F−1η̂∞) = η̂∞ by Theorem 7.30 (which is easily seen to hold with F and F−1

interchanged).

For all δ > 0 and for all R > 0, we can find `0 such that for all ` ≥ `0,∫
|ξ|≤R

dξ |µ̂`(ξ)− η̂∞(ξ)| ≤ δ.

On the other hand, η̂∞ ∈ L1 as explained above. It follows that for all δ > 0 there exists R > 0 such that∫
|ξ|≥R

dξ |η̂∞(ξ)| ≤ δ.

L1-convergence of µ̂` to η̂∞ implies uniform convergence of µ` to η∞ since any point x ∈ R is a point of
continuity for both µ` and η∞ and hence

|µ`(x)− η∞(x)| = |(F−1µ̂`)(x)− (F−1η̂∞)(x)|

=
∣∣∣∣∫

R
µ̂`(ξ)eiξx dξ −

∫
R
η̂∞(ξ)eiξx dξ

∣∣∣∣
≤

∫
R
|µ̂`(ξ)− η̂∞(ξ)| · |eiξx| dξ = ‖µ̂` − η∞‖1
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The L1 convergence will follow if we can prove that for all δ > 0, there exist R and `0 large enough so that
for all ` ≥ `0, ∫

|ξ|≥R

dξ |µ̂`(ξ)| ≤ δ.

We need to evaluate the integral ∫
|ξ|≥R

dξ |P`(ξ)|
∣∣∣∣ sin(ξ/2`+1)

ξ/2`+1

∣∣∣∣2 ,
where P`(ξ) =

∏`
j=1m0(ξ/2j). To do this, we split the integrand into two parts, namely |ξ| ≥ 2`π and

R ≤ |ξ| ≤ 2`π. To evaluate these two parts, we shall use the following three properties of P`.

(i) |P`(ξ)| ≤ 1 (since |m0(ξ)| ≤ 1 by Proposition 5.1)

(ii) |P`(ξ)| ≤ C

∣∣∣∣2−` sin(ξ/2)
sin(ξ/2`+1)

∣∣∣∣2 (1 + |ξ|)β ,

where β = logQ/ log 2, Q as in Lemma 8.12 page 249.

(iii) P` is periodic with period 2`+1π.

To see that (ii) holds, first note that as in the calculations on pp. 248–252, we have

(1/2)(1 + e−iξ) = e−iξ/2(eiξ/2 + e−iξ/2)/2 = e−iξ/2 cos(ξ/2)

and hence

|P`(ξ)| =
∏̀
j=1

|m0(ξ/2j)|

≤
∏̀
j=1

|(1/2)(1 + e−iξ/2j

)|2|q(e−iξ/2j

)|

≤
∏̀
j=1

| cos(ξ/2j+1)|2|q(e−iξ/2j

)|

=
∏̀
j=1

∣∣∣∣ sin(ξ/2j)
2 sin(ξ/2j+1)

∣∣∣∣2 |q(e−iξ/2j

)|

=
∣∣∣∣2−` sin(ξ/2)
sin(ξ/2`+1)

∣∣∣∣2 ∏̀
j=1

|q(e−iξ/2j

)|

The arguments on pages 250–252 for infinite products give bounds for finite products as well. We have

∑̀
j=1

|q(e−it/2j

)− 1| ≤
∑̀
j=1

|t|
2j

≤ |t|B

and hence, exactly as in the argument spanning the bottom of page 250 and the top of page 251 with ∞
replaced everywhere by `, we get ∣∣∣∣∣∣

∏̀
j=1

q(e−it/2j

)

∣∣∣∣∣∣ ≤ exp(B|t|).
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The argument in the middle of page 251, with the ∞’s replaced by the appropriate bounds, then shows that
for |t| > 1 and some positive constant C,∣∣∣∣∣∣

∏̀
j=1

q(e−it/2j

)

∣∣∣∣∣∣ ≤ C(1 + |t|)log Q/ log 2.

This holds then for all t ∈ R if C is replaced by a suitably large constant. This proves (ii).

We concentrate first on |ξ| ≥ 2`π. Using the periodicity of P`, we find∫
|ξ|≥2`π

dξ |P`(ξ)|
∣∣∣∣ sin(ξ/2`+1)

ξ/2`+1

∣∣∣∣2 ≤ C

∫
|ξ|≤2`π

dξ |P`(ξ)| | sin(ξ/2`+1)|2.

[Proof:∫
|ξ|≥2`π

dξ |P`(ξ)|
∣∣∣∣ sin(ξ/2`+1)

ξ/2`+1

∣∣∣∣2 =
∞∑

k=−∞
k 6=0

∫ 2`π+k2`+1π

2`π+(k−1)2`+1π

dξ |P`(ξ)|
∣∣∣∣ sin(ξ/2`+1)

ξ/2`+1

∣∣∣∣2

=
∞∑

k=−∞
k 6=0

∫ 2`π

−2`π=2`π−2`+1π

du |P`(u)|
∣∣∣∣ sin(u/2`+1 + kπ)

u/2`+1 + kπ

∣∣∣∣2

[set u = ξ − k2`+1π]

=
∞∑

k=−∞
k 6=0

∫
|ξ|≤2`π

dξ |P`(ξ)|
∣∣∣∣ sin(ξ/2`+1)
ξ/2`+1 + kπ

∣∣∣∣2
[since sin(θ + kπ) = ± sin(θ)]

Then use that for k ∈ Z, k 6= 0, and |ξ| ≤ 2`π, we have |k| ≥ 1 and hence |kπ + ξ/2`+1| ≥ |kπ| − |ξ|/2`+1 ≥
|k|π − 2`π/2`+1 = (|k| − 1

2 )π ≥ (|k| − 1
2 |k|)π = 1

2 |k|π which gives

1
|kπ + ξ/2`+1|2

≤ 1
( 1
2 |k|π)2

=
4
π2

1
|k|2

.

which yields the desired inequality with C = 4
∑

k∈Z, k 6=0 1/|k|2.]

Choose λ = 2−α`, with α ∈ (0, 1) to be fixed later. Since α` is positive, we have 0 < λ < 1. Then, using
| sin(x)| ≤ |x| and | sin(x)| ≤ 1, we get∫

|ξ|≤2`π

dξ |P`(ξ)| | sin(ξ/2`+1)|2 ≤ (λ2/4)
∫
|ξ|≤2`λ

dξ |P`(ξ)|+
∫

2`λ≤|ξ|≤2`π

dξ |P`(ξ)| (1)

Notice that 2`λ = 2`2−α` = 2(1−α)` > 1 since 1− α > 0. Recall that | sinx| ≥ 2|x|/π for |x| ≤ π/2.

[The case −π/2 ≤ x ≤ 0 follows by applying to −x the fact that sinx ≥ 2x/π when 0 ≤ x ≤ π/2, so it
suffices to prove the latter. The function f(x) = (sinx)− 2x/π satisfies f ′(x) = (cosx)− 2/π. As x increases
from 0 to π/2, cosx decreases from 1 to 0, passing through 2/π at precisely one value of x, say x = a. This
means that f is strictly increasing as x increases from 0 to a and is strictly decreasing as x increases from a
to π/2. Since f(0) = f(π/2) = 0, it follows that f is nonnegative on [0, π/2].]
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Now using (i) and (ii) above, and the fact that for |ξ| ≤ 2`λ we have |ξ/2`+1| ≤ λ/2 < 1/2 < π/2, we get∫
|ξ|≤2`λ

dξ |P`(ξ)| ≤
∫
|ξ|≤1

dξ |P`(ξ)|+ C

∫
1≤|ξ|≤2`λ

dξ (1 + |ξ|)β 1
|2` sin(ξ/2`+1)|2

≤
∫ 1

−1

1 dξ + C

∫
1≤|ξ|≤2`λ

dξ (1 + |ξ|)β 1
22` · (2|ξ/2`+1|/π)2

= 2 + Cπ2

∫
1≤|ξ|≤2`λ

dξ (1 + |ξ|)β 1
|ξ|2

≤ 2 + 2Cπ2

∫ ∞

1

dx
(1 + x)β

x2
= C1

where C1 is finite because ∫ ∞

1

(1 + x)β

x2
dx ≤

∫ ∞

1

(2x)β

x2
dx =

∫ ∞

1

2β

x2−β
dx

and 2− β > 1 by exercise 8.6(c).

On the other hand,∫
2`λ≤|ξ|≤2`π

dξ |P`(ξ)| ≤
∫

2`λ≤|ξ|≤2`π

dξ C

∣∣∣∣2−` sin(ξ/2)
sin(ξ/2`+1)

∣∣∣∣2 (1 + |ξ|)β

≤ C2−2`(1 + 2`π)β

∫
2`λ≤|ξ|≤2`π

dξ
1

sin2(ξ/2`+1)

≤ C2−2`(1 + 2`π)β2` · 2
∫ π

λ

du
1

sin2(u/2)
[u = ξ/2`]

≤ 2C2−`(1 + 2`π)β

∫ π

λ

du
1

(2(u/2)/π)2

≤ 2π2C2−`(2` + 2`π)β 1
λ2

(π − λ)

≤ C22`(β−1)(1/λ2)

Putting it all together, and choosing α = (1− β)/4 ∈ (0, 1), this implies that (1) is

≤ (1/4)λ2C1 + C22`(β−1)(1/λ2) = (1/4)2−2α`C1 + C22−4α`2α` ≤ C32−2α` = C32−2`(1−β)/4. (2)

This clearly tends to zero for `→∞.

We now evaluate the integral of |µ̂`| over R ≤ |ξ| ≤ 2`π. Using (ii) we find∫
R≤|ξ|≤2`π

dξ |P`(ξ)|
∣∣∣∣ sin(ξ/2`+1)

ξ/2`+1

∣∣∣∣2 ≤ C

∫
R≤|ξ|≤2`π

dξ

∣∣∣∣ sin(ξ/2)
2` sin(ξ/2`+1)

∣∣∣∣2 (1 + |ξ|)β

∣∣∣∣ sin(ξ/2`+1)
ξ/2`+1

∣∣∣∣2
= 4C

∫
R≤|ξ|≤2`π

dξ (1 + |ξ|)β |ξ|−2 sin2(ξ/2)

≤ 8C
∫ ∞

R

dx
(1 + x)β

x2

Since 2− β > 1, this tends to zero for R→∞, uniformly in `. Together with (2), this proves that∫
|ξ|≥R

dξ |µ̂`(ξ)|
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can be made as small as wanted by choosing ` and R large enough. As pointed out above, this proves
‖µ̂` − η̂∞‖1 → 0 as `→∞.

Finally, we only need to show that uniform convergence of the µ` implies uniform convergence of the η`.
The two functions µ0 and η0 agree on integers,

µ0(0) = η0(0) = 1,

µ0(k) = η0(k) = 0 for k ∈ Z, k 6= 0.

Using the recursion relation which both the µ` and the η` satisfy, one sees that this implies, for all ` =
0, 1, 2, . . .,

η`(k/2`) = µ`(k/2`) for all k ∈ Z.

Since η∞ is an inverse Fourier transform, it is uniformly continuous. Hence, for any ε > 0, there exists δ > 0
such that

|x− y| ≤ δ ⇒ |η∞(x)− η∞(y)| ≤ ε/2.

There also exist `0 such that, for all ` ≥ `0 and all y,

|η∞(y)− µ`(y)| ≤ ε/2.

Fix any ` ≥ `0 such that 2−` ≤ δ. Let x ∈ R. It follows inductively that η` is constant on each interval of
the form [(−2−`−1) + 2−`k,−2−`−1 + 2−`(k + 1)), k ∈ Z.

[η0 is constant on each interval [−(1/2)+ k,−(1/2)+ k+1) and if η` is constant on each interval of the form

(∗)
[
−1
2`+1

+
k

2`
,
−1
2`+1

+
k + 1

2`

)
then for j = 0, 1, 2, 3 the transformation x 7→ 2x− j carries the interval

(∗∗)
[
−1
2`+2

+
k

2`+1
,
−1
2`+2

+
k + 1
2`+1

)
,

into an interval of the form (∗) (with k replaced by k − 2`+1j) and hence η`+1 = Tη` is constant on each
interval (∗∗).]

Choose k ∈ Z such that x ∈ [(−2−`−1) + 2−`k,−2−`−1 + 2−`(k + 1)). This gives

−2−`−1 ≤ x− 2−`k < −2−`−1 + 2−` = 2−`−1

and hence
|x− 2−`k| ≤ 2−`−1 < δ.

Since 2−`k also belongs to the interval [(−2−`−1) + 2−`k,−2−`−1 + 2−`(k+ 1)), we have η`(x) = η`(2−`k) =
µ`(2−`k), and we get

|η`(x)− η∞(x)| ≤ |µ`(2−`k)− η∞(2−`k)|+ |η∞(2−`k)− η∞(x)| ≤ ε.

Since ε was arbitrary, this shows that η` converges uniformly to η∞ for `→∞. �
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Suppose g and h are functions related by g(x) = h(x− a). Then

(Tg)(x) =
3∑

k=0

hkg(2x− k)

=
3∑

k=0

hkh(2x− k − a)

=
3∑

k=0

hkh(2(x− a/2)− k)

= (Th)(x− a/2)

It follows by induction that
(T ◦ng)(x) = (T ◦nh)(x− a/2n)

If the sequence (T ◦nh) converges uniformly to a uniformly continuous function ϕ, then so does (T ◦ng). To
see this, fix ε > 0. Choose δ > 0 so that |x− y| < δ implies |ϕ(x)− ϕ(y)| < ε/2. Choose n0 large enough so
that for any n ≥ n0, |a/2n| < δ and all x ∈ R, |(T ◦nh)(x)−ϕ(x)| < ε/2, then for any n ≥ n0 and any x ∈ R
we have

|(T ◦ng)(x)− ϕ(x)| = |(T ◦nh)(x− a/2n)− ϕ(x)|
≤ |(T ◦nh)(x− a/2n)− ϕ(x− a/2n)|+ |ϕ(x− a/2n)− ϕ(x)|
≤ ε/2 + ε/2 = ε

Since χ[0,1)(x) = χ[−1/2,1/2)(x− 1/2), we get first part of the following result.

Corollary 5.4 The sequence (T ◦ng), where g = χ[0,1), converges uniformly to a continuous function ϕ
supported by [0, 3] and satisfying

(Fϕ)(ξ) =
1√
2π

∞∏
j=1

m0(ξ/2j).

The function ϕ satisfies the recurrence relation Tϕ = ϕ.

Proof. For the last statement, from (T ◦(n+1)g)(x) =
∑3

k=0 hk(T ◦ng)(2x − k) get by taking limn→∞ of
both sides that ϕ(x) =

∑3
k=0 hkϕ(2x− k) = (Tϕ)(x). �

6 Computations

We present here the results of some computational experimentation based on examples and exercises in
[Nievergelt 1999]. The computations were carried out using a hybrid of C programs and Maple commands.
The C programs were used to generate files containing strings which could be pasted into maple commands.
This somewhat awkward, but nevertheless quite efficient, way of proceeding enabled us in the short time
at our disposition to generate plots without learning how to program in Maple or how to generate plots
in C. (The first author already knew how to program in C and the second author already knew how to
generate plots in Maple.) We used the program in [Press et al. 1993] for applying the wavelet transform and
its inverse.

The program daubechies.c listed in Appendix A generates values of the Daubechies scaling function
ϕ. The values are calculated on the dyadic rationals using the basic recursion relation satisfied by ϕ. The
program has two variants. One variant (corresponding to the lines marked "version 2" in the code) stores
the values to a file phi.dat using fwrite. The file phi.dat then becomes a table from which the values can
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be retrieved using fread. The other variant (corresponding to the lines marked "version 1" in the code)
writes a string of blocks of the form “[a,b], ” to a file phi.txt, where a is a decimal representation, to
three digits after the decimal, of a dyadic rational and b is a decimal representation, of the same type, of the
value of ϕ at the dyadic rational in question. The values of a run over the dyadic rationals with denominator
28 = 256 in the interval [0, 3]. The string in the file phi.txt resulting from running "version 1" of the
program was pasted into a suitable Maple plot command. The resulting plot is also given in Appendix A.

The program wt.c listed in Appendix B generates the wavelet transform of an array of numbers whose
length is a power of 2. It is a minor variation on the one in [Press et al. 1993]. It was applied to the sequence
of 64 hourly temperatures (in ◦C) at Charlottetown, from August 15, 2004 00:00 to August 17, 2004 15:00
inclusive, obtained from the site

http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html

We made a first step toward compressing the data by zeroing out entries in the transform whose absolute
value was smaller than the value of the variable tolerance. The degree of the compression achieved, or
more precisely just the proportion of zeros in the resulting transform, is indicated in Appendix C for two
values of tolerance. As an indication of the quality of the data obtained from the inverse transform of the
compressed transform, we also give in Appendix C graphs of the original function and the inverse transforms
corresponding to the same two values of tolerance.

Finally, Appendix D contains the Maple code for working out Exercise 8.5 page 252. We offer it here
without further commentary.
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Appendix A

//This is the program daubechies.c
#include <stdio.h>
#include <stdlib.h>

#define H0 0.683012701892219
#define H1 1.18301270189222
#define H2 0.316987298107781
#define H3 -0.183012701892219

#define p0 0
#define p1 1.36602540378444
#define p2 -0.366025403784439
#define p3 0

double calculate_phi(int i, double *phi1, int power);

void main()
{

int n, N, m, k, i, pow, power;
double ans, *phi1, *phi2, x, y;
FILE *daubPtr;

//"version 1"
/*

if ((daubPtr = fopen("phi.txt", "w")) == NULL)
printf("File could not be opened\n");

*/
// "version 2"

if ((daubPtr = fopen("phi.dat", "wb")) == NULL)
printf("File could not be opened\n");

n = 8;
pow = 1;
for (i=0; i<n; i++) pow *= 2;
N = 3*pow + 1;

phi1 = (double*)malloc(N*sizeof(double));
phi2 = (double*)malloc(N*sizeof(double));
phi1[0] = p0;
phi1[1] = p1;
phi1[2] = p2;
phi1[3] = p3;
power = 1;
for(k=1; k<=n; k++)
{

power *= 2;
m = 3*power+1;
for(i=0; i<m; i++) phi2[i] = calculate_phi(i, phi1, power);
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for(i=0; i<m; i++) phi1[i] = phi2[i];
}

// "version 1"
/*

for(i=0; i<m; i++) fprintf(daubPtr, "[%7.3f, %7.3f],", i/(float)power , phi2[i]);
*/

// "version 2"
fwrite(phi2, 1, m*sizeof(double), daubPtr);

// "version 2"
// Close the file and reopen to retrieve a particular
// value of phi. For "version 1", comment out the remaining
// lines down to the line before the return statement.
fclose(daubPtr);
if ((daubPtr = fopen("phi.dat", "rb")) == NULL)

printf("File could not be opened\n");

x = 1.5;

// find i giving the closest dyadic rational to x of the form i/power
i=0;
while(i <= x * power)i++;
if (i - (x*power) > 0.5) i--;

// read the appropriate entry from phi.dat
fseek(daubPtr, i*sizeof(double), SEEK_SET);
fread(&y, 1, sizeof(double), daubPtr);
printf("phi(%f)=%f\n", x,y);

return;
}

double calculate_phi(int i, double *phi1, int power)
{

double sum=0;
int k, j, power0;
power0 = power/2;
j = -1;
for(k=0; k*power0 <= i && k<4; k++) j++;

sum += H0*phi1[i];
if(j>=1) sum += H1*phi1[i-power0];
if(j>=2) sum += H2*phi1[i-2*power0];
if(j>=3) sum += H3*phi1[i-3*power0];

return sum;
}
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The Maple commands

> daub:=[[ 0.000, 0.000],[ 0.004, 0.065],[ 0.008,
0.095], {...} [ 2.984,
-0.000],[ 2.988, 0.000],[ 2.992, 0.000],[ 2.996,
-0.000],[ 3.000, 0.000]]:

> with(plots):
Warning, the name changecoords has been redefined

> pointplot(daub, style=line, color=red);

where {...} stands for a long list, obtained by running daubechies.c, of pairs with first coordinates going
from 0 to 256 by increments of 1/256 = 0.00390625 ≈ 0.004, produce the following plot.
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Appendix B

//This is the program wt.c
#include <stdio.h>
#include <stdlib.h>

#define C0 0.4829629131445341
#define C1 0.8365163037378079
#define C2 0.2241438680420134
#define C3 -0.1294095225512604

#define N 64

void wt1(double *a, unsigned long n, int isign);
void daub4(double * a, unsigned long n, int isign);

int main()
{

int i;

double tolerance = 0.5;

double *data;
FILE *daubPtr;

//Hourly temperature, Charlottetown PE,
//from August 15, 2004 00:00 to August 17, 2004 15:00 inclusive

double inputdata[N]={19.2, 18.6, 18.2, 17.4, 17.4, 17.4, 17.1, 18.4,
19.8, 20.9, 22.1, 23.0, 23.7, 21.4, 21.7, 20.7,
19.9, 19.2, 18.8, 17.8, 17.3, 17.2, 17.6, 16.7,
17.1, 17.2, 16.2, 15.4, 16.3, 15.3, 15.6, 16.9,
18.1, 19.4, 20.5, 21.9, 21.9, 21.4, 21.0, 20.5,
20.8, 20.4, 19.5, 17.9, 17.7, 17.4, 16.1, 17.1,
16.7, 15.3, 15.3, 15.1, 15.2, 14.6, 14.2, 15.0,
14.6, 14.4, 15.1, 17.0, 17.1, 18.1, 19.5, 19.6};

if ((daubPtr = fopen("output.txt", "w")) == NULL)
printf("File could not be opened\n");

data = (double *) malloc(N * sizeof(double));
for (i=0;i<N;i++) data[i] = inputdata[i];

for (i=0;i<N;i++) printf("%6.2f",data[i]);
printf("\n\n");

for (i=0;i<N;i++) fprintf(daubPtr, "[%d,%6.2f], ",i, data[i]);

wt1(data,N,1);
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for (i=0;i<N;i++) printf("%6.2f",data[i]);
printf("\n\n");

for (i=0;i<N;i++) if (-tolerance < data[i] && data[i]<tolerance) data[i]=0;

printf("data after compression using tolerance = %f:\n",tolerance);

for (i=0;i<N;i++) printf("%6.2f",data[i]);
printf("\n\n");

wt1(data,N,-1);

for (i=0;i<N;i++) printf("%6.2f",data[i]);
printf("\n");

for (i=0;i<N;i++) fprintf(daubPtr, "[%d,%6.2f], ",i, data[i]);

return 0;
}

/*******************************************************************/
/* */
/* One-dimensional discrete wavelet transform. This routine, */
/* a slightly modified version of an algorithm in Numerical */
/* Recipes in C, implements the pyramid algorithm, replacing */
/* a[0..n-1] by its wavelet transform (for isign=1), or */
/* performing the inverse operation (for isign=-1). */
/* */
/* Note that n MUST be an integer power of 2. */
/* */
/*******************************************************************/

void wt1(double *a, unsigned long n, int isign)
{

int i;
unsigned long nn;
if (n < 4) return;
if (isign >= 0) for (nn=n;nn>=4;nn>>=1) daub4(a,nn,isign);

//Wavelet transform. Start at largest hierarchy,
//and work towards smallest.

else for (nn=4;nn<=n;nn<<=1) daub4(a,nn,isign);
//Inverse wavelet transform. Start at smallest hierarchy,
//and work towards largest.

}

/* Applies the Daubechies 4-coefficient wavelet filter to data
vector a[0,...,n-1] (for isign=1) or applies its transpose (for
isign=-1). Used hierarchically by wt1. */
void daub4(double * a, unsigned long n, int isign)
{
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double *wksp;
unsigned long nh,nh1,i,j;
if (n < 4) return;
wksp = (double *) malloc(n * sizeof(double));
nh = n >> 1; //nh is n divided by 2
if (isign == 1) {
//Apply filter.

for (i=0,j=0;j<=n-4;j+=2,i++) {
wksp[i] = C0*a[j] + C1*a[j+1] + C2*a[j+2] + C3*a[j+3];
wksp[i+nh] = C3*a[j] - C2*a[j+1] + C1*a[j+2] - C0*a[j+3];

}
wksp[i] = C0*a[n-2] + C1*a[n-1] + C2*a[0] + C3*a[1];
wksp[i+nh] = C3*a[n-2] - C2*a[n-1] + C1*a[0] - C0*a[1];

}
if (isign == -1) {
//Apply transpose filter.

wksp[0] = C2*a[nh-1] + C1*a[n-1] + C0*a[0] + C3*a[nh];
wksp[1] = C3*a[nh-1] - C0*a[n-1] + C1*a[0] - C2*a[nh];
for (i=0,j=2;i<nh-1;i++) {

wksp[j++] = C2*a[i] + C1*a[nh+i] + C0*a[i+1] + C3*a[nh+i+1];
wksp[j++] = C3*a[i] - C0*a[nh+i] + C1*a[i+1] - C2*a[nh+i+1];

}
}
for (i=0;i<n;i++) a[i]=wksp[i];
free(wksp);

}
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Appendix C

Wavelet coefficients output by program wt.c, rounded to 2 decimals. (The output has been reformatted.)

105.51 99.54 3.60 10.08 -0.95 8.88 -8.84 -3.29
3.79 -1.00 -0.97 2.72 0.78 -0.86 -2.87 0.46

-0.89 -0.25 0.97 -0.05 -0.42 0.94 -0.99 -0.35
1.12 1.27 -0.65 -0.23 -0.38 -1.50 -0.06 0.75
0.17 -0.10 -0.73 0.13 0.13 1.47 0.29 -0.07
0.25 -0.26 0.56 -0.02 0.05 0.70 -0.65 -0.04

-0.12 0.42 0.04 0.23 0.40 -0.13 -0.98 0.66
-0.08 0.30 -0.61 0.06 -0.70 -0.20 0.58 0.16

With tolerance = 1, this becomes the following sequence of coefficients, in which 50 out of 64 are zero.
The inverse transform produces the red line (the one without boxes if you are looking at this in black and
white) on the first graph on the next page. The graph with the small boxes represents the original data set,
with one box for each data point. On each vertical line through one of these boxes there is a data point on
the red line as well. (The corresponding boxes are omitted.)

105.51 99.54 3.60 10.08 0.00 8.88 -8.84 -3.29
3.79 0.00 0.00 2.72 0.00 0.00 -2.87 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.12 1.27 0.00 0.00 0.00 -1.50 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.47 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

With tolerance = 0.5, this becomes the following sequence of coefficients, in which 30 out of 64 are zero.
The inverse transform produces the blue line on the second graph on the next page.

105.51 99.54 3.60 10.08 -0.95 8.88 -8.84 -3.29
3.79 -1.00 -0.97 2.72 0.78 -0.86 -2.87 0.00

-0.89 0.00 0.97 0.00 0.00 0.94 -0.99 0.00
1.12 1.27 -0.65 0.00 0.00 -1.50 0.00 0.75
0.00 0.00 -0.73 0.00 0.00 1.47 0.00 0.00
0.00 0.00 0.56 0.00 0.00 0.70 -0.65 0.00
0.00 0.00 0.00 0.00 0.00 0.00 -0.98 0.66
0.00 0.00 -0.61 0.00 -0.70 0.00 0.58 0.00
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Appendix D

The following Maple code is for solving exercise 8.5 page 252 and more generally for experimenting with
plots of the graphs of the terms of the sequence (T ◦ng) for various choices of g.

> with(plots):
Warning, the name changecoords has been redefined
>
> H[0]:=(1+3^(1/2))/4:
> H[1]:=(3+3^(1/2))/4:
> H[2]:=(3-3^(1/2))/4:
> H[3]:=(1-3^(1/2))/4:
>
> g:=x->piecewise(x<0, 0, 0<=x and x<=1, 1, 1<x, 0):
> g:=x->piecewise(x<-1/2, 0, -1/2<=x and x<1/2, 1, 1/2<=x, 0):
> g:=x->piecewise(x<-1, 0, -1<=x and x<1, 1-abs(x), 1<=x, 0):
> g:=x->piecewise(x<0, 0, 0<=x and x<2, 1-abs(x-1), 2<=x, 0):
> g:=x->piecewise(x<0, 0, 0<=x and x<3/2, 16*((3/4)-abs(x-3/4))/9, 3/2<=x, 0):
>
> Tg :=x->(H[0]*g(2*x) + H[1]*g(2*x-1) + H[2]*g(2*x-2) + H[3]*g(2*x-3)):
> T2g:=x->(H[0]*Tg(2*x) + H[1]*Tg(2*x-1) + H[2]*Tg(2*x-2) + H[3]*Tg(2*x-3)):
> T3g:=x->(H[0]*T2g(2*x) + H[1]*T2g(2*x-1) + H[2]*T2g(2*x-2) + H[3]*T2g(2*x-3)):
> T4g:=x->(H[0]*T3g(2*x) + H[1]*T3g(2*x-1) + H[2]*T3g(2*x-2) + H[3]*T3g(2*x-3)):
> T5g:=x->(H[0]*T4g(2*x) + H[1]*T4g(2*x-1) + H[2]*T4g(2*x-2) + H[3]*T4g(2*x-3)):
>
> a0:=plot(g(x), x=-1..3):
> a1:=plot(Tg(x), x=-1..3):
> a2:=plot(T2g(x), x=-1..3):
> a3:=plot(T3g(x), x=-1..3):
> a4:=plot(T4g(x), x=-1..3):
> a5:=plot(T5g(x), x=-1..3, color=black):
> display(a3,a5);

Running the code in the following order

(1) the first block and then the second block defining H[0], H[1], H[2], H[3]

(2) the fourth definition of g

(3) the fourth block up to the definition of T5g inclusive

(4) the line defining a5

(5) the fifth definition of g followed by the fourth block of code up to the definition of T3g inclusive and
then the line defining a3

(6) the last line of code

produces the following plot. (The black line is the smoother of the two graphs. The other is in Maple’s
default red.)
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